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A calculation technique based on the SVD algorithm is suggested for solving non-isother- 
mal kinetics problems. The uncertainties in the sought parameter values are obtained by super- 
imposing random (Gauss) noise on experimental dependences. 
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The so-called non-isothermal kinetics techniques are used extensively to 
determine the kinetic parameters of heterogeneous reactions, which is explained 
by the apparent simplicity of measurements and of the processing of measure- 
ment results. Many authors, are, however, skeptic about the utility of these tech- 
niques for studying reaction mechanisms (see, e.g. [1, 2]). There are various 
reasons for this attitude, both of general nature [3] and based on the consideration 
of thermoanalytical experimental characteristics [4]. On the other hand, little at- 
tention has been given to the calculation procedures for treating thermoanalytical 
data. Thus, very often, the function f (  ct ) used to describe kinetic curves is 
chosen solely using the linearization criterion. However, because of a strong Ar- 
rhenius dependence, the possibility of the linearization depends only weakly on 
the type of that function [5]. The influence of measurement errors and the calcula- 
tion procedure on the quality of the solution has practically been ignored in the 
literature. 

In this work, we examine certain techniques that can be used to determine the 
kinetic parameters from non-isothermal thermogravimetric experiment data. 

The classical reaction of thermal dehydration of calcium oxalate mono- 
hydrate, CaC2Oa.H20, has been studied. The kinetic model has been chosen in the 
form 

dtz_A e x p I _ f f ~  Ix n (l_{X)m (1, 
dT q 
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where ~ is the experimental conversion. T the temperature, q the heating rate, 
q = d T / d t  =const, A the preexponential factor, E the activation energy, and m and 
n are kinetic equation parameters. There are certain reasons for the choice of the 

kinetic equation in the form f (c t )=  t~ n (1 -  t~) m. First, this empirical equation has 
successfully been used to describe various heterogeneous processes [6]. Second- 
ly, the exponents m and n in Eq. (1) are determined by the reaction mechanism. 
Extracting their values from the experiment, therefore, enables one to draw con- 
clusions concerning the kinetic model without recourse to a priori  considera- 
tions. 

Equation (1) can easily be linearized as follows: 

dot A E 
In - ~  = In - ~--~+ n.ln ( ~ ) + m. In (1 - ~ )  (2) 

that is it reduces to a linear LSQ problem 

U x  = b (3) 

Here and below, the notation is as follows: U is the matrix of the coefficients of 
Eq. (1) ( ail = 1/q,  ai2 = - 1 / Z i ,  ai3 = In ( Oq ) and ai4 = In ( 1 - ai ), i is the index of a 
kinetic curve point), x is the vector of the sought parameters (xl =In(A), x2 =E/R, 
x3 =n and x4 =m) and b is the vector of the quantities bi = In ( dt~/dT I~ = ~)..The un- 
derlined letters are used to denote matrices and their elements, and italics to 
denote vectors and vector components. The dimensionality of the matrix 
U (1 x4  ) and b(l) is determined by the number of measurements along the 
kinetic curve. 

Solving problem (3) involves certain difficulties, for the quantity 1/T varies 
only insignificantly within the temperature range of a chemical transformation. 
The first and second columns of the matrix U are therefore almost identical (to 
within a constant factor). For this reason, multiplying both sides of Eq. (3) by the 

matrix U r on the left (the usual scheme for solving linear LSQ problems) yields 
an almost degenerate set of equations: 

U T Ux = Urb (4) 

Actually, the transition to problem (4) alters the situation for the worse sub- 
stantially even compared with Eq. (3) where as mentioned above, we have an al- 
most linear dependence between matrix columns. In fact, the relative error in the 
sought parameters can be estimated as 

I Axl< IAbl 
_ cond (U). I b I (5) 
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where Ab is the vector of errors on the right hand side of Eq. (3), and the symbol 
I. I denotes the norm (length) of a vector. The errors Abi = A ( In [ dt~/d T 14--. ~ ] ), 
are derivative from conversion, oq, measurement errors and errors involved in the 
analytical approximation to the observed dependence ~t(T). The quantity cond(U ) 
is the conditionality of matrix U (Matrix U elements also include errors and 
therefore, Eq. (5) in fact underestimates lax I). If we use the Euclidean norm, 
Ix I = ( ~ xi 2 )1/2, cond(U ) is merely equal to the ratio of the largest matrix U sin- 

gular value to the smallest one (see below). If matrix U has an incomplete rank 
(the matrix is degenerate) one or more of its singular values reduce to zero, and 
problem (3) becomes undetermined along the corresponding directions, that is 
vectors y such that U__y - 0. Although in actual kinetic problems matrix __U is not 
degenerate, its conditionality amounts to several hundred, and calculating kinetic 
parameters with an accuracy of the order of 10% requires that uncertainties in 
vector b components be not larger than 0.05%. To develop a clearer idea of the 
situations, imagine an ellipsoid of solutions, that is a region in the space of 
parameters whose all points are compatible with experimental data to within 
measurement errors. The longest to the shortest principal axis ratio is just equal to 
the matrix conditionality. The larger this value (the greater the matrix 
degeneracy) the more prolate is the ellipsoid which in the limit of cond( U ) ~ ,  
becomes an infinite cylinder. Cond( U r __U ) = ( cond ( U ) ) ~  105- 106and there- 
fore, using scheme (4) appears to be not the best way to solve problem (3), for as 
is clear from Eq. (5) even computer arithmetics rounding errors can then 
noticeably affect the calculation results. 

The most effective technique for solving poorly conditioned linear LSQ 
problems is to use a factorization of the type 

U = uSB (6) 

known as SVD (singular value decomposition) [7]. Here u and B are unitary 
matrices with dimensions l x I and k x k (in problem (3), k --4) and S is an I x k 
matrix with nonzero elements (singular values of matrix U in the principal 
diagonal. The LSQproblem reduces to minimizing the discrepancy 

Irl = l U x - b l  (7) 

Using factorization (6) enables Eq. (7) to be rewritten as 

I urr  I = I u r U x  - urb I = I S B x  - urb I (8) 

for uru = J, a unit matrix, by definition. Actually, the problems of minimizing the 
discrepancies (7) and (8) are equivalent: multiplying vectors by unitary matrices 
does not change their length. Moreover, this operation does not affect the problem 
conditionality, for the conditionality of any unitary matrix is equal to unity. The 
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minimization problem now has a trivial solution. As k upper rows are only non- 
zero in matrix S the vector Sx has only k, that is four, nonzero components. Thus 
the problem is reduced to a set of four simultaneous equations. Using the notation 
urb = d yields 

l 
I r I = l urr I = ( ~ d 2 )1/2 (9) 

~5 

and, provided the initial matrix U is not degenerate (there is no zero singular 
numbers), 

X = v T S - l u T b  (10) 

Here _S -1 is an l x k matrix whose main diagonal contains reciprocals of sin- 
gular values and whose all off-diagonal elements are zero. If one of the singular 

values, eg. s_i, is equal to zero the corresponding matrix _S -1 element is also set to 
zero to find the shortest vector x minimizing discrepancies (7) [7]. The general 
solution can then be obtained as the sum of this vector and the ith r o w  of matrix V 
taken with an indefinite (the ellipsoid of solutions turns into a cylinder). In actual 
calculations, singular values are set to zero if they are smaller than a threshold 
value depending on the accuracy of the determination of vector b components. 

The advantages of the SVD technique are as follows. 

1. It provides an easy means of estimating problem sensitivity to the ac- 
curacy of measurements by calculating the conditionality of matrix U equal to 
the ratio of its largest singular value to the smallest one, 

cond ( U ) = Smax/Smin (11) 

This is difficult to do using the Gauss algorithm (the L.__~u factorization of matrix 
__vT_v). 

2. Singular value decomposition enables a general solution to be found when 
matrix U is degenerate or nearly degenerate: 

x = ( v / ) r  + v r s - l u r  o (12) 

where i] is an indefinite factor, i is the number of the zero (or nearly zero) sin- 
gular value, and v / is the ith r o w  of matrix V. With 13 set to zero we obtain the 
shortest vector x solving an LSQ problem (3). The Gauss algorithm is unfit to 
handle degenerate problems. 

3. Lastly, the SVD technique makes it possible to characterize the ellipsoid of 
solutions in detail. For this purpose, the initial problem (3) should first be res- 
caled using a diagonal matrix W with the elements wii equal to the reciprocals of 
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the root mean square deviations for the corresponding vector b components, 
W__.ii = 1 / f i b :  

W U x  = W b  (13) 

The SV decomposition of matrix W U  results in matrix _V whose rows determine 
the directions of the principal axes of the ellipsoid of solutions. The semiaxes 
lengths are equal to the reciprocals of the corresponding singular values. 

The shortcoming of the SVD procedure is an increase in computer time ex- 
penditures compared with the standard technique. As far as problem (3) is con- 
cerned this increase is almost unnoticeable. 

One more problem is that of the determination of uncertainties in the 
parameters calculated from experimental data. As the hypothesis of a Gauss or at 
least symmetrical distribution can by no means be accepted for the logarithm of 
the quantity In ( d a / d T )  (Eq. (2)), the standard procedure for calculating OLSQ 
values can only give very rough estimates of confidence intervals. Actually, er- 
rors involved in matrix U elements should also be taken into account 

_U-'Ab + A ( _U -I ) b (14) 

Using the notation aij and dij for the matrix _U -I and A ( _U -I ) elements, respective- 
ly A ( U "-I ) can be calculated as A ( _U -I ) = ( U + AU )-i _ _U-I -~ U-IAUU-1 see 
Eq. (19), the ith component of vector Ax can be written as 

l 

AXi ---- Z ( aljAbj q- dijbj ) (15)  
A--1 

and 

t )2 #t-1 t 
( ~tXi )2 ---- Z ( a~j~bj q- 2 Z a~.i~-ikAbj Abk -b ( Z dijbj )2 

~-1 ~ 1  ~1 

l l 

q- 2 ( Z aij~bj )( Z dikbk ) (16) 
j=l k=-I 

Hence the variance is 

o~l_ l / 
Oxi = ( a_;~ )~bj  + 2 E ai~kM [ Abj~i I + M [ ( ~ _~ibj )21 

I 

+ 2 ~ a~jbkM [Abj_dik ] (17) 
j~--1 
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where M [x ] is the mathematical expectation for x. If the problem is scaled ac- 
cording to Eq. (13), we have Dbj =1 for allj. Assuming the distributions for Abj 
and dij to be symmetrical and statistically independent yields M [AbjAbk ] = ~k 
(the Kronecker symbol) and M [Abjdik] = 0 for all j ,  k. The third term in Eq. (17) 
can easily be calculated using the approximation to dij given above. 

Below, confidence intervals calculated using Eq. (14) are compared with more 
accurate Monte-Carlo estimates. 

This technique is based on superimposing random Gauss noise on measure- 
ment results (experimental conversion values). The half-width of the Gauss dis- 
tribution can be determined experimentally. Using this approach implies 
generating a desired number of 'experimental' kinetic curves that are treated as 
described above to obtain a series of parameter sets. We thus can determine not 
only the mathematical expectation values for the squares of parameter deviations 
from their means, M [ ~ ] but also the coefficients of skewness and excess 

)~li=M[~f~]/(g[~i ]) 3/2 and Z2i=g[Ax4]/(M[Ax~i ])2-3; M[Axn]= 
N 

~, Ax~j/N, where N is the number of generated kinetic curves), that is we can fully 
./=1 
characterize the distribution functions for the sought parameters. The results 
cease to vary after generating some 1000 curves. The numerical data cited below 
have been obtained with N =5000. 

Applying the SVD procedure to treat each generated curve would require too 
large computation time expenditures. However as I AU I <<1U Iwe can use the ap- 
proximation 

( __U "t- A_UU )-1 = ( j + U-qAU )-IU-1 --. [ j _ U--1AU + ( _U-IAu_ )2 ] _U-1 

(18) 

whence 

Ax = [ J -  U'qAU + ( U-IAU )2 ] U-I ( b + Ab ) - U-lb (19) 

SV decomposition can therefore be performed but once to calculate the inverse 
(or pseudoinverse [7]) matrix U "q = VrS-lur (see above). As far as cubic spline and 
reaction rate calculations, random noise generation, and matrix multiplications 
are concerned, these operations do not take much time. 

One more point should be mentioned. Equations (3) include conversion and 
conversion rate values as independent quantities, although in fact, they are not so 

It 

( tx ( t ) = f ( dct/dt ) dx ). The parameters obtained by solving LSQ problem (3) 
0 

should therefore be verified by a numerical integration of Eq. (1) and a com- 
parison of the calculated and experimental dependences ct(T). 
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The calculation scheme described above was realized on DVK-3M (a Soviet 
analog of PDP-11) and IBM AT microcomputers. The algorithms of key proce- 
dures were borrowed from the book by Forsythe, Malcolm, and Moler [7]. At the 
first stage, experimental conversions, O~xp~ are introduced and the experimental 
o~(T) dependence is approximated by a cubic spline for calculating the derivatives, 
dtz/dT I ~ ,  analytically. The ~ ,  &t/dT Io~o~, and Ti values are used to calculate 
matrix U and vector b components (Eq. (3)). After introducing weight factors (the 
transition to Eq. (13)) the problem is solved using the SVD procedure and the 
aLSQ quantities are calculated (Eq. (14)). Next a certain number of kinetic curves 
are generated by superimposing random noise on the experimental curve to obtain 
reliable estimates of confidence intervals for the sought parameters. Lastly, the 
parameters are substituted into Eq. (1) and numerical integration is performed to 
determine the ~heor. values. At the stage of solving Eq. (13), certain parameters 
can be fixed which makes it possible to test various kinetic models. 

The weight factors, Eq. (13), should be chosen especially carefully, for they 
strongly affect both parameter and confidence interval values. The weight factors 
are determined by the variance of conversion measurements, D~t, which is instru- 
ment dependent and should be investigated very thoroughly. We have found that 
Do~ varies with the degree of conversion and can be described by the sum of a sine 
and Gauss functions, the latter with a maximum near the highest reaction rate. 
The problem of measurements errors in the thermogravimetric experiment will be 
discussed in more detail elsewhere. 

To exemplify the procedure, let us consider thermogravimetric data on 
CaC204.H20 obtained with the help of an OD-103 instrument. The input con- 
sisted of conversions measured at ten points in the temperature range of 348 to 
433 K. In spite of the comparatively low temperatures, the conditionality of the 
problem was cond(U) =725 (at higher temperatures, the quantity 1/T varies within 
a still narrower range; thus for a similar process at Tar of 1000 K, the con- 
ditionality increases to 1500). Clearly, the determination of the kinetic 
parameters from this experiment can hardly make sense. In fact, a formal solution 
gave meaningless results: In A =-54.9, E/R =-19839, m =0.162, and n =2.574. 
The general solution was obtained by setting the smallest singular value to zero: 
ln A =-3.067 +13(--0.105), E/R = 1287.41 +13(-42.843), m =0.604 +~1(-9.10 '4) and 
n =0.741 +1~(3.7.10-3). The confidence intervals were gigantic ( + 6.023.104 for 
E/R. Attempts to improve the situation by the introduction of more measurement 
data corresponding to intermediate kinetic curve points did not give the desired 
result, for this only added dependent equations to system (3), and the con- 
ditionality remained practically the same when the number of experimental points 
was increased twofold. 

Varying the heating rate rotates the ellipsoid of solutions. Combined treatment 
of data obtained for the same substance at various heating rates yields results that 
are determined by an intersection of ellipsoids of solution for individual experi- 
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ments. As a result, the conditionality decreases substantially, and far narrower 
confidence intervals are obtained. Applying the calculation procedure described 
above to three kinetic curves obtained at heating rates of 0.028, 0.076, and 
0.167 deg/s yields cond(U) - 85, 1nA=18.9+3.1, E/R=lO062+I180, 
m = 0.981 + 0.405, and n = 0.154 + 0.427. Typical coefficient of skewness and ex- 
cess values are Z1 = -  1 -2  and Z~= 0.7-4.5. The new parameter values cor- 
respond approximately to the general solution given above with ~ =-205, which 
shows that solving even very poorly conditioned problems makes sense if the 
result~ obtained are regarded properly. 

The Monte-Carlo uncertainties have been given above. The corresponding 
OLSQ values are 5.9, 2490, 0.243, and 0.353, respectively. One can see that they 
give only a vague idea of the actual situation. 

It is also clear that the results for the dehydration of CaC204.H20 are close to 
the kinetic model with m=l  and n =0. Assuming this model yields 
lnA=21.2+ 1.8 and E/R= 11057+738. The quality of this solution (the agree- 
ment with the experiment) is practically the same as with the parameter values 
given above. The root mean square deviation of the numerical integration results 
from experimental conversions is equal to 0.0144, the mean standard deviation of 
measurement data being 0.0261. 

It seems likely that treating even a single kinetic curve can be justified if a 
variable heating rate is used. Unfortunately, the advantages of the techniques 
based on heating rate variations are only limited, for at high rates, instrumental 
function errors increase sharply. Besides, the reaction mechanism can change 
with the rate of heating. Instrumental function errors also make it impossible to 
resolve the problems of non-isothermal kinetics by increasing the precision of 
measurements. 

To sum up, the choice of the calculation procedure is very important for han- 
dling non-isothermal kinetics problems. The data cited above demonstrate that it 
is practically impossible to obtain reliable estimates of kinetic parameters form a 
single thermogravimetric curve. Nevertheless the problem is not quite hopeless, 
if only the reaction mechanism does not change within a reasonable range of heat- 
ing rate variations. 

We hope that this work will to a certain extent reduce skepticism towards non- 
isothermal kinetics techniques. 
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Zusammenfassung- -Ein  auf dem SVD-Algorithmus beruhendes Rechenverfahren zur 
L6sung nichtisothermer kinetischer Probleme wir vorgeschlagen. Die Unbestimmtheit im 
Rauschparameterwert wurde in Abhttngigkeit yon den experimentellen Bedingungen durch die 
0berlagerung eines Random- (Gau6schen) Rauschens ermittelt. 
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